Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity.

نویسندگان

  • B B Zhou
  • P Chaturvedi
  • K Spring
  • S P Scott
  • R A Johanson
  • R Mishra
  • M R Mattern
  • J D Winkler
  • K K Khanna
چکیده

Recent evidence indicates that arrest of mammalian cells at the G(2)/M checkpoint involves inactivation and translocation of Cdc25C, which is mediated by phosphorylation of Cdc25C on serine 216. Data obtained with a phospho-specific antibody against serine 216 suggest that activation of the DNA damage checkpoint is accompanied by an increase in serine 216 phosphorylated Cdc25C in the nucleus after exposure of cells to gamma-radiation. Prior treatment of cells with 2 mM caffeine inhibits such a change and markedly reduces radiation-induced ataxia-telangiectasia-mutated (ATM)-dependent Chk2/Cds1 activation and phosphorylation. Chk2/Cds1 is known to localize in the nucleus and to phosphorylate Cdc25C at serine 216 in vitro. Caffeine does not inhibit Chk2/Cds1 activity directly, but rather, blocks the activation of Chk2/Cds1 by inhibiting ATM kinase activity. In vitro, ATM phosphorylates Chk2/Cds1 at threonine 68 close to the N terminus, and caffeine inhibits this phosphorylation with an IC(50) of approximately 200 microM. Using a phospho-specific antibody against threonine 68, we demonstrate that radiation-induced, ATM-dependent phosphorylation of Chk2/Cds1 at this site is caffeine-sensitive. From these results, we propose a model wherein caffeine abrogates the G(2)/M checkpoint by targeting the ATM-Chk2/Cds1 pathway; by inhibiting ATM, it prevents the serine 216 phosphorylation of Cdc25C in the nucleus. Inhibition of ATM provides a molecular explanation for the increased radiosensitivity of caffeine-treated cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine.

Caffeine exposure sensitizes tumor cells to ionizing radiation and other genotoxic agents. The radiosensitizing effects of caffeine are associated with the disruption of multiple DNA damage-responsive cell cycle checkpoints. The similarity of these checkpoint defects to those seen in ataxia-telangiectasia (A-T) suggested that caffeine might inhibit one or more components in an A-T mutated (ATM)...

متن کامل

Human SAD1 kinase is involved in UV-induced DNA damage checkpoint function.

Checkpoint activation by DNA damage during G(2) prevents activation of cyclin B/Cdc2 complexes, and as a consequence, mitotic entry is blocked. Although initiation and maintenance of G(2) arrest are known to be regulated by at least two distinct signaling pathways, including those of p38MAPK and ataxia-telangiectasia-mutated (ATM)- and Rad3-related (ATR)-Chk1 in higher eukaryotes, the actual nu...

متن کامل

Replication protein A2 phosphorylation after DNA damage by the coordinated action of ataxia telangiectasia-mutated and DNA-dependent protein kinase.

Replication protein A (RPA, also known as human single-stranded DNA-binding protein) is a trimeric, multifunctional protein complex involved in DNA replication, DNA repair, and recombination. Phosphorylation of the RPA2 subunit is observed after exposure of cells to ionizing radiation (IR) and other DNA-damaging agents, which implicates the modified protein in the regulation of DNA replication ...

متن کامل

Ataxia-telangiectasia and Rad3-related and DNA-dependent protein kinase cooperate in G2 checkpoint activation by the DNA strand-breaking nucleoside analogue 2¶-C-cyano- 2¶-deoxy-1-B-D-arabino-pentofuranosylcytosine

2¶-C-Cyano-2¶-deoxy-1-B-D-arabino-pentofuranosylcytosine (CNDAC), the prodrug (sapacitabine) of which is in clinical trials, has the novel mechanism of action of causing single-strand breaks after incorporating into DNA. Cells respond to this unique lesion by activating the G2 checkpoint, affected by the Chk1-Cdc25C-cyclindependent kinase 1/cyclin B pathway. This study aims at defining DNA dama...

متن کامل

Mice lacking protein phosphatase 5 are defective in ataxia telangiectasia mutated (ATM)-mediated cell cycle arrest.

Protein phosphatase 5 (Ppp5), a tetratricopeptide repeat domain protein, has been implicated in multiple cellular functions, including cellular proliferation, migration, differentiation and survival, and cell cycle checkpoint regulation via the ataxia telangiectasia mutated/ATM and Rad3-related (ATM/ATR) signal pathway. However, the physiological functions of Ppp5 have not been reported. To con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 14  شماره 

صفحات  -

تاریخ انتشار 2000